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ABSTRACT 
An analysis is presented to study the effects of buoyancy on forced convection in an axisymmetric stagnation 
flow of micropolar fluids over a vertical cylinder with constant or linear variation of surface heat flux 
conditions. Numerical solutions are given for the governing momentum, angular momentum and energy 
equations. Two flow regions, namely the buoyancy-assisted and buoyancy-opposed cases are analysed. It is 
observed that the wall shear stress and surface heat transfer rate increase or decrease with the buoyancy force 
parameter depending on the flow regime being buoyancy-assisted or buoyancy-opposed respectively. 
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NOMENCLATURE 
A = Constant used in eq. (6) r 
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Pr 
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Re 

= Radius of cylinder 
= Dimensionless material parameter 
= Velocity profile function 
= Dimensionless microrotation 
= Modified Grashoff number 
= Heat transfer coefficient 
= Microinertia per unit mass 
= Thermal conductivity 
= Constant exponent 
= Microrotation 
= Local Nusselt number (hz/k) 
= Prandtl number 
= Pressure 
= Heat flux at the wall 
= Reynolds number (Aa2/2v) 

Subscripts 
w = Surface conditions 
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∞ 

= Co-ordinate normal to the cylindrical surface 
= Temperature 
= Velocity component in r-direction 
= Velocity component in z-direction 
= Co-ordinate parallel to the wall 
= Dimensionless co-ordinate 
= Volumetric expansion coefficient 
= Buoyancy parameter 
= Dimensionless temperature 
= Dynamic viscosity 
= Cross viscosity 
= Kinematic viscosity 
= Fluid density 
= Dimensionless wall couple stress 
= Demensionless material parameters 

= Conditions far away from the surface 

INTRODUCTION 

Eringen1 has developed the theory of micropolar fluids which show microrotation effects as well 
as microinertia. The theory may be applied to explain the flow of colloidal fluids, liquid crystals, 
fluids with additives, animal blood, etc. 

The problem of finding exact solutions of the Navier-Stokes equations presents 
insurmountable mathematical difficulties. This is primarily due to the fact that the Navier-Stokes 
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equations are non-linear. However, it is possible to find exact solutions in certain particular cases. 
Wang2 presented an exact solution for the axisymmetric stagnation flow on an infinite cylinder. 
One of the present authors3 provided the solutions corresponding to the steady state heat transfer 
in an axisymmetric stagnation flow over an infinite circular cylinder. Solutions for the 
temperature field were obtained for isothermal and uniform heat flux wall conditions for a wide 
range of Prandtl numbers and Reynolds numbers. Recently, Gorla et al.4,5 examined the fluid flow 
and heat transfer characteristics in an oscillating laminar boundary layer in the vicinity of an 
axisymmetric stagnation point by means of a boundary layer approximation. They evaluated the 
amplitude and phase angle of the wall skin friction as well as heat transfer rate fluctuations for a 
wide range of the reduced frequency of oscillation. 

A situation where both the forced and free convection effects are of comparable order is called 
mixed convection. In such a flow, the flow and thermal fields are no longer symmetric with 
respect to the stagnation line. The friction factor and local heat transfer rate can be quite different 
under these conditions relative to the forced convection case. Gorla6 has studied the mixed 
convection in an axisymmetric flow on a vertical non-isothermal cylinder. 

The inadequacy of the classical continuum approach to describe the mechanics of complex 
fluids has led to the development of theories of microcontinua in which continuous media are now 
regarded as sets of structured particles possessing not only mass and velocity but also a structure 
with which is associated a moment of inertia density and a microdeformation tensor. This 
extension of fluid mechanics required a complete reappraisal of classical concepts, viz the 
symmetry of the stress tensor, the absence of couple stresses, etc., in order to account for local 
structural aspects and micromotions. In fact, while many of the principles of classical continuum 
mechanics remain valid for this new class of fluids, they had to be augmented with additional 
balance laws and constitutive relations. The presence of microscopic elements in a fluid gives rise 
not only to classical Cauchy stresses but also to couple stresses due to the microelement 
interactions. 

The earliest formulation of a general theory of fluid microcontinua is attributed to Eringen1 in 
which the mechanics of fluids with deformable microelements are considered. The author 
developed a physical model in which each continuum particle is assigned a substructure, i.e. each 
material volume element contains microvolume elements which can translate, rotate and deform 
independently of the motion of the macrovolume; however, each deformation of the macrovolume 
element can be expected to produce a subsequent deformation of the microvolume elements. Thus 
a mechanism is provided in the theory to treat materials which are capable of supporting local 
stress moments and body moments and, in addition, are influenced by the microelement spin 
inertia. The micropolar theory was later on extended by Eringen7 to take into account thermal 
effects, and has been termed the theory of thermomicrofluids, which represents the most general 
theory of micromorphic thermofluids. 

In the present paper, we have presented an analysis for the forced and free convection of a 
micropolar fluid in the vicinity of an axisymmetric stagnation point on a vertical cylinder with a 
constant or linear variation of the surface heat flux. Numerical results are presented for a range of 
values of the material parameters, the buoyancy parameter and Prandtl number of the fluid. 

ANALYSIS 

Let us consider a steady, laminar, incompressible flow of a micropolar fluid at an axisymmetric 
stagnation point on an infinite cylinder. A model of the flow is shown in Figure 1. The flow is 
axisymmetric about the z-axis and also symmetric to the z = 0 plane. The stagnation line is at z = 0 
and r = a. The temperature of the free stream fluid is taken as T∞. The surface of the body is 
assumed to be subjected to qw. The governing equations are given by: 
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Mass: 

Momentum: 

Angular momentum: 

Energy: 

The boundary conditions for the velocity and angular velocity field are given by 
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For the temperature field we have 

In (3) the density variation is taken into account by the Boussinesq approximation. The term 
which represents the buoyancy force effect on the flow field has ± signs. The plus sign indicates 
buoyancy-assisted flow whereas the negative sign stands for buoyancy-opposed flow. 

We now let 

It may be verified that the continuity equation is satisfied. Upon substituting the expressions in 
(8) into equations (2-5) we have 

In the above equations, a prime indicates differentiation with respect to η only. We note that 
similarity solutions exist if d2qw/dz2 = 0. Assuming qw = czn, we have n = 0 or 1 in order for 
separation of variables to be satisfied. Under these conditions, (11) becomes 
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The transformed boundary conditions are given by 

The buoyancy parameter ξ is inversely proportional to ζ when η = 0 and is independent of z 
when n = l.When (gβC/kfv2)(2v/A)5/2 =1 along with n = 1, the buoyancy parameter ξ = 1 and the 
situation will be called as the self-similar case for the linear wall heat flux. This condition is one 
of many possibilities for the linear wall heat flux conditions that may be prescribed. The wall 
shear stress may be written as 

The friction factor is given by 

The wall couple stress may be written as 

where ε = (β/γ). 
The dimensionless wall couple stress σ becomes 

The local Nusselt number is given by 

Equations (9), (10) and (12) are solved numerically for the cases n = 0 and n = 1 for both 
buoyancy-assisted and buoyancy-opposed flow regions. We note that n = 0 corresponds to 
uniform surface heat flux condition whereas n = 1 represents the linear variation of surface heat 
flux. 

The numerical procedure used here solves the two-point boundary value problems for a system of 
N ordinary differential equations in the range (Χ,Χ1 ) . The system is written as and the derivatives 

are evaluated by a procedure that evaluates the derivatives of Y1,Y2,...,YN at a general point x. 
Initially Ν boundary values of the variable yi must be specified, some of which will be specified 
at x and some at x1. The remaining Ν boundary values are guessed and the procedure corrects them 
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by a form of Newtonian iteration. Starting from the known and guessed values of yi at x, the 
procedure integrates the equations forward to a matching point R, Using Merson's method. 
Similarly, starting from x1 it integrates backwards to R. The difference between the forward and 
backward values of yi at R should be zero for a true solution. The procedure uses a generalized 
Newton method to reduce these differences to zero, by calculating corrections to the estimated 
boundary values. This process is repeated iteratively until convergence is obtained to a specified 
accuracy. The tests for convergence and the perturbation of the boundary conditions are carried 
out in a mixed form, e.g., if the error estimate for yi is ERRORi, we test whether ABS (ERRORi) 
< ERRORi x(1 + ABS yi). 

A solution was considered to be converged if the newly calculated values of f, f', G, G' and θ 
differed from their previous guessed values within a tolerance of Î ≤ 10-5. The numerical results 
were found to depend on η∞ and the step size Δη. We have used Δη = 0.005 and η∞ = 20 without 
causing numerical oscillations in the values of f, f', G, G, θ and θ'. 

Table 1 Local friction factor, wall couple stress and Nusselt number for n = 1 and n = 0 respectively 

Buoyancy-assisted flow Buoyancy-opposed flow 
Pr λ Δ 

10 0.5 0.5 

5.0 
50 

5.0 0.5 

5.0 
50 

50 0.5 

5.0 
50 

100 0.5 0.5 

5.0 
50 

5.0 0.5 

5.0 
50 

50 0.5 

5.0 
50 

F" (ξ, 1) 
10.52955 
10.54257 
5.146001 
5.150034 
1.700126 
1.700901 
10.52894 
10.54188 
5.148862 
5.152540 
1.721074 
1.721833 
10.52897 
10.54191 
5.149785 
5.153606 
1.734967 
1.735708 

10.48729 
10.49926 
5.133923 
5.137129 
1.698199 
1.698635 

10.48741 
10.50032 
5.136840 
5.139981 
1.719154 
1.719607 

10.48745 
10.50035 
5.137648 
5.141048 
1.73305 
1.733519 

G' (ξ, 1) 
0.026446 
0.026466 
0.193973 
0.194023 
1.058541 
1.058711 
0.003861 
0.003861 
0.032404 
0.032408 
0.218386 
0.218400 
0.000468 
0.000468 
0.004398 
0.004398 
0.037486 
0.037487 
0.026421 
0.026423 
0.193862 
0.193875 
1.058242 
1.058288 
0.003859 
0.003859 
0.032396 
0.032397 
0.218359 
0.218363 
0.000468 
0.000468 
0.004398 
0.004398 
0.037485 
0.037485 

1/Θ'(ξ, 1) 
18.94823 
12.91243 
15.00676 
10.7506 
10.61145 
7.857541 
18.94789 
12.91245 
15.00777 
10.75057 
10.61815 
7.854514 
18.94791 
12.91246 
15.00837 
10.75094 
10.63777 
7.866285 

54.20113 
32.78130 
38.4341 
21.20029 
23.52433 
15.30443 
54.20126 
32.78277 
38.43974 
21.20343 
23.59334 
15.32277 
54.20132 
32.78284 
38.44168 
21.20508 
23.6607 
15.34742 

F"(ξ, 1) 
10.41253 
10.40013 
5.107052 
5.102448 
1.693143 
1.692365 
10.41346 
10.40049 
5.105089 
5.105188 
1.713336 
1.713357 
10.41350 
10.40052 
5.110319 
5.106255 
1.728028 
1.727293 
10.45493 
10.44294 
5.118740 
5.115675 
1.695071 
1.694640 
10.45504 
10.44201 
5.121585 
5.117750 
1.716035 
1.715583 

10.45508 
10.44205 
5.122492 
5.118814 
1.729945 
1.729479 

G' (ξ, 1) 
0.02639 
0.02638 
0.19370 
0.19365 
1.05774 
1.05758 
0.00386 
0.00386 
0.03238 
0.03238 
0.21832 
0.21830 
0.00047 
0.00047 
0.00439 
0.00440 
0.03748 
0.03748 
0.02642 
0.02641 
0.19381 
0.1938 
1.05805 
1.05801 
0.00389 
0.00386 
0.03239 
0.03239 
0.21834 
0.21834 
0.00047 
0.00047 
0.00439 
0.00440 
0.03748 
0.03748 

1/Θ'(ξ, 1) 
18.89607 
12.88450 
14.98084 
10.73321 
10.60242 
7.850362 
18.89651 
12.88449 
14.98166 
10.73327 
10 60913 
7.847397 
18.89653 
12.88450 
14.98226 
10.73363 
10.62881 
7.859265 

54.16299 
32.71589 
38.40368 
21.17710 
23.51316 
15.29929 
54.16311 
32.71451 
38.41001 
21.17906 
23.58224 
15.31755 
54.16317 
32.71458 
38.4133 
21.18071 
23.64906 
15.34219 
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The buoyancy parameter ξ is inversely proportional to z when n = 0 and is independent of z 
when n = 1, as revealed by equation (8). For n = 1 and C = [A5 K2f(g2 β2 ν)]1 / 2 we obtain a 
similarity solution. This case was examined for buoyancy-assisted as well as buoyancy-opposed 
cases. Numerical results representing the friction factor, wall couple stress and Nusselt number 
are displayed in Table 1 for a range of micropolar parameters. When Δ = 0, the present results 
coincided with the Newtonian fluid data reported by Gorla6. These details are not reproduced here 
in the interest of conserving space. 

As Δ increases we observe that the friction factor and the heat transfer rate decrease. This 
indicates that micropolar fluids possess drag reducing and heat transfer suppression 
characteristics. The wall couple stress is observed to increase with Δ. As the Prandtl number 
increases, the local Nusselt number increases for both buoyancy-assisting and opposing flows. 
Figure 2 displays results for local wall shear stress. All computations were done from ξ = 0 to 10. 
Both cases, n = 0 and n = 1 were considered. In the case of the buoyancy-assisted flow regime, the 
buoyancy force increases the friction factor whereas in the case of buoyancy-opposed case, the 
opposite behaviour is observed. As ξ → 10, the buoyancy-opposed case results in boundary layer 
separation. In the buoyancy-assisted flow region, the friction factor in the case of uniform surface 
heat flux case (n = 0) is higher than the linear variation of surface heat flux case (n = 1). The 
results indicated that local wall shear stress decreases as Δ increases for both buoyancy-assisting 
and -opposing flows. The numerical results also indicated that the Nusselt number decreases as Δ 
increases for both buoyancy-assisting and -opposing flows. Figure 3 shows that the Nusselt 
number in the uniform surface heat flux case (n = 0) is less than the linear surface heat flux case 
(n = 1) in the buoyancy-assisted flow regime. The buoyancy-opposed flow regime displays the 
opposite behaviour. The Nusselt number increases with Prandtl number. Figure 4 displays the 
distribution of wall couple stress within the boundary layer. The results indicated that as Δ 
increases, the wall couple stress increases. 

It may be noted that the results presented in this paper are valid in a small region in the vicinity 
of the stagnation line. The increase in the buoyancy parameter is mainly due to an increase in the 
wall heat flux rather than an increase in the axial distance along the cylinder. 
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CONCLUDING REMARKS 

In this paper we have studied the combined forced and free convection in axisymmetric stagnation 
flows of micropolar fluids by using theory of micropolar fluids in the vicinity of a vertical heated 
cylinder. Numerical solutions are presented for the transformed equations governing the fluid 
flow and heat transfer. The missing wall values of the velocity, angular velocity and thermal 
functions are tabulated for a range of the dimensionless grouping of the material parameters. The 
analysis considered two flow regions, namely the buoyancy-assisted and buoyancy-opposed 
cases. In the case of the buoyancy-assisted regime, the friction factor and Nusselt number increase 
with increasing values of the buoyancy parameter, whereas, the opposite trend was observed to be 
true for the buoyancy-opposed flow regime. As the material parameter Δ increases, both friction 
factor and heat transfer rate decrease. This indicates that micropolar fluids reduce drag and heat 
transfer rate. 
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