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ABSTRACT

An analysis is presented to study the effects of buoyancy on forced convection in an axisymmetric stagnation
flow of micropolar fluids over a vertical cylinder with constant or linear variation of surface heat flux
conditions. Numerical solutions are given for the governing momentum, angular momentum and encrgy
equations. Two flow regions, namely the buoyancy-assisted and buoyancy-opposed cases are analysed. It is
observed that the wall shear stress and surface heat transfer rate increase or decrease with the buoyancy force
parameter depending on the flow regime being buoyancy-assisted or buoyancy-opposed respectively.

KEY WoRDS Convection Fluid flow Heat transfer Micropolar fluids Stagnation flow

NOMENCLATURE
A = Constant used in eq. (6) r = Co-ordinate normal to the cylindrical surface
a = Radius of cylinder T = Temperature
B = Dimensionless material parameter u = Velocity component in r-direction
f = Velocity profile function w = Velocity component in z-direction
G = Dimensionless microrofation z = Co-ordinate parallel to the wall
Gr* = Modified Grashoff number n = Dimensionless co-ordinate
I.1 = Heat tfansf'er coeft‘l.cwnt B = Volumetric expansion coefficient
j = Microinertia per unit mass £ = Buoyancy parameter
k = Thermal conductivity ® = Dimensionless tem
n = Constant exponent B lonless temperature
N = Microrotation Ly = Dynamic viscosity
Nu, =Local Nusselt number (hz/k) K = Cross viscosity
Pr. = Prandtl number v = Kinematic viscosity
4 = Pressure P = Fluid density
q,, = Heat flux at the wall a = Dimensionless wall couple stress
Re  =Reynolds number (4a%/2v) 2, A, € = Demensionless material parameters
Subscripts
w = Surface conditions o = Conditions far away from the surface

INTRODUCTION

Eringen! has developed the theory of micropolar fluids which show microrotation effects as well
as microinertia. The theory may be applied to explain the flow of colloidal fluids, liquid crystals,
fluids with additives, animal blood, etc.

The problem of finding exact solutions of the Navier-Stokes equations presents
insurmountable mathematical difficulties. This is primarily due to the fact that the Navier-Stokes
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equations are non-linear. However, it is possible to find exact solutions in certain particular cases.
Wang? presented an exact solution for the axisymmetric stagnation flow on an infinite cylinder.
One of the present authors? provided the solutions corresponding to the steady state heat transfer
in an axisymmetric stagnation flow over an infinite circular cylinder. Solutions for the
temperature field were obtained for isothermal and uniform heat flux wall conditions for a wide
range of Prandtl numbers and Reynolds numbers. Recently, Gorla et al.*> examined the fluid flow
and heat transfer characteristics in an oscillating laminar boundary layer in the vicinity of an
axisymmetric stagnation point by means of a boundary layer approximation. They evaluated the
amplitude and phase angle of the wall skin friction as well as heat transfer rate fluctuations for a
wide range of the reduced frequency of oscillation.

A situation where both the forced and free convection effects are of comparable order is called
mixed convection. In such a flow, the flow and thermal fields are no longer symmetric with
respect to the stagnation line. The friction factor and local heat transfer rate can be quite different
under these conditions relative to the forced convection case. Gorla® has studied the mixed
convection in an axisymmetric flow on a vertical non-isothermal cylinder,

The inadequacy of the classical continuum approach to describe the mechanics of complex
fluids has led to the development of theories of microcontinua in which continuous media are now
regarded as sets of structured particles possessing not only mass and velocity but also a structure
with which is associated a moment of inertia density and a microdeformation tensor. This
extension of fluid mechanics required a complete reappraisal of classical concepts, viz the
symmetry of the stress tensor, the absence of couple stresses, etc., in order to account for local
structural aspects and micromotions. In fact, while many of the principles of classical continuum
mechanics remain valid for this new class of fluids, they had to be augmented with additional
balance laws and constitutive relations. The presence of microscopic elements in a fluid gives rise
not only to classical Cauchy stresses but also to couple stresses due to the microelement
interactions.

The earliest formulation of a general theory of fluid microcontinua is attributed to Eringen! in
which the mechanics of fluids with deformable microelements are considered. The author
developed a physical model in which each continuum particle is assigned a substructure, i.e. each
material volume element contains microvolume elements which can translate, rotate and deform
independently of the motion of the macrovolume; however, each deformation of the macrovolume
element can be expected to produce a subsequent deformation of the microvolume elements. Thus
a mechanism is provided in the theory to treat materials which are capable of supporting local
stress moments and body moments and, in addition, are influenced by the microelement spin
inertia. The micropolar theory was later on extended by Eringen’ to take into account thermal
effects, and has been termed the theory of thermomicrofluids, which represents the most general
theory of micromorphic thermofluids.

In the present paper, we have presented an analysis for the forced and free convection of a
micropolar fluid in the vicinity of an axisymmetric stagnation point on a vertical cylinder with a
constant or linear variation of the surface heat flux. Numerical results are presented for a range of
values of the material parameters, the buoyancy parameter and Prandtl number of the fluid.

ANALYSIS

Let us consider a steady, laminar, incompressible flow of a micropolar fluid at an axisymmetric
stagnation point on an infinite cylinder. A model of the flow is shown in Figure 1. The flow is
axisymmetric about the z-axis and also symmetric to the z = 0 plane. The stagnation lineisatz=0
and r = a. The temperature of the free stream fluid is taken as T,. The surface of the body is
assumed to be subjected to q,,. The governing equations are given by:
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The boundary conditions for the velocity and angular velocity field are given by
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For the temperature field we have

r=a: I _

Tk %
r—w: T—>T,
In (3) the density variation is taken into account by the Boussinesq approximation. The term

which represents the buoyancy force effect on the flow field has * signs. The plus sign indicates
buoyancy-assisted flow whereas the negative sign stands for buoyancy-opposed flow.

We now let
r
n o =)
a *
Gr,
d _Rez%
u  =—Aan% f (n)
w =24z
N =4é.z.17”2.G(1))
a
6 =Tq*f°
)
2k, .
Gr. =gﬁqw§ )
Kpv
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Re =-[-‘—a—-
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It may be verified that the continuity equation is satisfied. Upon substituting the expressions in
(8) into equations (2-5) we have
3

2
A+ )"+ )+ Rell+ 7 ~(f) ]+ 016"+ Gl 0 =0 ©
2/ ' G ’ P Tlf"
A’G" +20G'] + Re[f (5 +1G) ~nf G] - A. B[L— + nG] = 0 (10)

. 2 2
_l_[ng"+9']+Ref9'=mgq_w_ﬁa_id 9w
Pr q

an

In the above equations, a prime indicates differentiation with respect to 1 only. We note that
similarity solutions exist if d%q, /dz? = 0. Assuming g, = cz", we have n = 0 or 1 in order for
separation of variables to be satisfied. Under these conditions, (11) becomes
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L [n6" + 6’1+ Ref@' — nRef'8 = 0. 12)
Pr
The transformed boundary conditions are given by
fEY=ED=0, 6ED=-1, G(§,1)=—;1£f”(§,1)
f1E®)=1, 6(*)=0, G(&*)=0.

The buoyancy parameter & is inversely proportional to z when n = 0 and is independent of 2
when n = 1. When (gfC/k,v?) (2v/A)>? = 1 along with n = 1, the buoyancy parameter £=1 and the
situation will be called as the self-similar case for the linear wall heat flux. This condition is one
of many possibilities for the linear wall heat flux conditions that may be prescribed. The wall
shear stress may be written as

13)

Tyw —(H+K) )r-a+’dv)r-a

14)
K 0w
=(H+3) 2 e
The friction factor is given by
1
-3 A ”
Cy, =(Re.Re) * [(1+3) A ED)] (15)
The wall couple stress may be written as
8 e-1 ., ,
M, = Re Re, ~L [ 17 6.1+ 26" &) 16)

where £ = (/).
The dimensionless wall couple stress o becomes

M, 2A a(e=1) ., '
0 -y = o Re 5D 61 +26' (6 1) a7
The local Nusselt number is given by
1
2 % 2
Nu, = £ (18)
6(51)

Equations (9), (10) and (12) are solved numerically for the cases n = 0 and n = 1 for both
buoyancy-assisted and buoyancy-opposed flow regions. We note that n = 0 corresponds to
uniform surface heat flux condition whereas n = 1 represents the linear variation of surface heat
flux,

RESULTS AND DISCUSSION

The numerical procedure used here solves the two-point boundary value problems for a system of
N ordinary differential equations in the range (X, X,). The system is written as and the derivatives

Yy .
E= LCaYnYasenyy) i=42,0,N

are evaluated by a procedure that evaluates the derivatives of Yy, Y., ..., Yy, at a general point x.
Initially ¥ boundary values of the variable y; must be specified, some of which will be specified
atx and some at x,. The remaining N boundary values are guessed and the procedure corrects them
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by a form of Newtonian iteration. Starting from the known and guessed values of y; at x,the
procedure integrates the equations forward to a matching point R, Using Merson’s method.
Similarly, starting from x, it integrates backwards to R. The difference between the forward and
backward values of y, at R should be zero for a true solution. The procedure uses a generalized
Newton method to reduce these differences to zero, by calculating corrections to the estimated
boundary values. This process is repeated iteratively until convergence is obtained to a specified
accuracy. The tests for convergence and the perturbation of the boundary conditions are carried
out in a mixed form, e.g., if the error estimate for y, is ERROR,, we test whether ABS (ERROR))
<ERRORi x (1 + ABS y).

A solution was considered to be converged if the newly calculated values of f, f', G, G'and 8
differed from their previous guessed values within a tolerance of € = 10-3. The numerical results
were found to depend on #;_ and the step size An. We have used Ay = 0.005 and 7, = 20 without
causing numerical oscillations in the values of f, ', G, G, 8 and 8"

Table 1 Local friction factor, wall couple stress and Nusselt number for n = 1 and 1 = 0 respectively

Buoyancy-assisted flow Buoyancy-opposed flow
Pr A A F (E1) G'(&1) 18’ FUED  GED 107G
10 0.5 0.5 10.52955 0.026446 18.94823 10.41253 0.02639 18.89607
10.54257 0.026466 12.91243 10.40013 0.02638 12.88450
5.0 5.146001 0.193973 15.00676 5.107052 0.19370 14.98084
5.150034 0.194023 10.7506 5.102448 0.19365 10.73321
50 1.700126 1.058541 10.61145 1.693143 1.05774 10.60242
1.700901 1.058711 7.857541 1.692365 1.05758 7.850362
5.0 0.5 10.52894 0.003861 18.94789 10.41346 0.00386 18.89651
10.54188 0.003861 12.91245 10.40049 0.00386 12.88449
5.0 5.148862 0.032404 15.00777 5.105089 0.03238 14.98166
5.152540 0.032408 10.75057 5.105188 0.03238 10.73327
50 1.721074 0.218386 10.61815 1.713336 0.21832 10 60913
1.721833 0.218400 7.854514 1.713357 0.21830 7.847397
50 0.5 10.52897 0.000468 18.94791 10.41350 0.00047 18.89653
10.54191 0.000468 12.91246 10.40052 0.00047 12.88450
5.0 5.149785 0.004398 15.00837 5.110319 0.00439 14.98226
5.153606 0.004398 10.75094 5.106255 0.00440 10.73363
50 1.734967 0.037486 10.63777 1.728028 0.03748 10.62881
1.735708 0.037487 7.866285 1.727293 0.03748 7.859265
100 0.5 0.5 10.48729 0.026421 54.20113 10.45493 0.02642 54.162599
10.49926 0.026423 32.78130 10.44294 0.02641 32.71589
5.0 5.133923 0.193862 38.4341 5.118740 0.19381 38.40368
5.137129 0.193875 21.20029 5.115675 0.1938 21.17710
50 1.698199 1.058242 23.52433 1.695071 1.05805 23.51316
1.698635 1.058288 15.30443 1.694640 1.05801 15.29929
5.0 0.5 10.48741 0.003859 54.20126 10.45504 0.00389 54.16311
10.50032 0.003859 32.78277 10.44201 0.00386 32.71451
5.0 5.136840 0.032396 38.43974 5.121585 0.03239 38.41001
5.139981 0.032397 21.20343 5.117750 0.03239 21.17906
50 1.719154 0.218359 23.59334 1.716035 0.21834 23.58224
1.719607 0.218363 15.32277 1.715583 0.21834 15.31755
50 0.5 10.48745 0.000468 54.20132 10.45508 0.00047 54.16317
10.50035 0.000468 32.78284 10.44205 0.00047 32.71458
5.0 5.137648 0.004398 38.44168 5.122492 0.00439 38.4133
5.141048 0.004398 21.20508 5.118814 0.00440 21.18071
50 1.73305 0.037485 23.6607 1.729945 0.03748 23.64906
1.733519 0.037485 15.34742 1.729479 0.03748 15.34219
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The buoyancy parameter & is inversely proportional to z when # = 0 and is independent of z
when n = 1, as revealed by equation (8). For n = 1 and C = [A% K*/(g* p* v)]V/2 we obtain a
similarity solution. This case was examined for buoyancy-assisted as well as buoyancy-opposed
cases. Numerical results representing the friction factor, wall couple stress and Nusselt number
are displayed in Table 1 for a range of micropolar parameters. When A = 0, the present results
coincided with the Newtonian fluid data reported by Gorla®, These details are not reproduced here
in the interest of conserving space.

As A increases we observe that the friction factor and the heat transfer rate decrease. This
indicates that micropolar fluids possess drag reducing and heat transfer suppression
characteristics. The wall couple stress is observed to increase with A. As the Prandtl number
increases, the local Nusselt number increases for both buoyancy-assisting and opposing flows.
Figure 2 displays results for local wall shear stress. All computations were done from & = 0 to 10.
Both cases, n =0 and n = 1 were considered. In the case of the buoyancy-assisted flow regime, the
buoyancy force increases the friction factor whereas in the case of buoyancy-opposed case, the
opposite behaviour is observed. As £ — 10, the buoyancy-opposed case results in boundary layer
separation. In the buoyancy-assisted flow region, the friction factor in the case of uniform surface
heat flux case (# = 0) is higher than the linear variation of surface heat flux case (n = 1). The
results indicated that local wall shear stress decreases as A increases for both buoyancy-assisting
and -opposing flows. The numerical results also indicated that the Nusselt number decreases as A
increases for both buoyancy-assisting and -opposing flows. Figure 3 shows that the Nusselt
number in the uniform surface heat flux case (n = 0) is less than the linear surface heat flux case
(n = 1) in the buoyancy-assisted flow regime.The buoyancy-opposed flow regime displays the
opposite behaviour. The Nusselt number increases with Prandtl number. Figure 4 displays the
distribution of wall couple stress within the boundary layer. The results indicated that as A
increases, the wall couple stress increases.

It may be noted that the results presented in this paper are valid in a small region in the vicinity
of the stagnation line. The increase in the buoyancy parameter is mainly due to an increase in the
wall heat flux rather than an increase in the axial distance along the cylinder.
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Figure 2 Local friction factor versus § (A = 5.0)
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Figure 3 Local Nusselt number versus & (A = 5.0)
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Figure 4 Local wall couple stress versus §(A=5.0,€=1)
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CONCLUDING REMARKS

In this paper we have studied the combined forced and free convection in axisymmetric stagnation
flows of micropolar fluids by using theory of micropolar fluids in the vicinity of a vertical heated
cylinder. Numerical solutions are presented for the transformed equations governing the fluid
flow and heat transfer. The missing wall values of the velocity, angular velocity and thermal
functions are tabulated for a range of the dimensionless grouping of the material parameters.The
analysis considered two flow regions, namely the buoyancy-assisted and buoyancy-opposed
cases. In the case of the buoyancy-assisted regime, the friction factor and Nusselt number increase
with increasing values of the buoyancy parameter, whereas, the opposite trend was observed to be
true for the buoyancy-opposed flow regime. As the material parameter A increases, both friction
factor and heat transfer rate decrease. This indicates that micropolar fluids reduce drag and heat
transfer rate.
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